1,078 research outputs found

    On the complexity of color-avoiding site and bond percolation

    Full text link
    The mathematical analysis of robustness and error-tolerance of complex networks has been in the center of research interest. On the other hand, little work has been done when the attack-tolerance of the vertices or edges are not independent but certain classes of vertices or edges share a mutual vulnerability. In this study, we consider a graph and we assign colors to the vertices or edges, where the color-classes correspond to the shared vulnerabilities. An important problem is to find robustly connected vertex sets: nodes that remain connected to each other by paths providing any type of error (i.e. erasing any vertices or edges of the given color). This is also known as color-avoiding percolation. In this paper, we study various possible modeling approaches of shared vulnerabilities, we analyze the computational complexity of finding the robustly (color-avoiding) connected components. We find that the presented approaches differ significantly regarding their complexity.Comment: 14 page

    Lower bounds for several online variants of bin packing

    Full text link
    We consider several previously studied online variants of bin packing and prove new and improved lower bounds on the asymptotic competitive ratios for them. For that, we use a method of fully adaptive constructions. In particular, we improve the lower bound for the asymptotic competitive ratio of online square packing significantly, raising it from roughly 1.68 to above 1.75.Comment: WAOA 201

    On Flux Quantization in F-Theory II: Unitary and Symplectic Gauge Groups

    Full text link
    We study the quantization of the M-theory G-flux on elliptically fibered Calabi-Yau fourfolds with singularities giving rise to unitary and symplectic gauge groups. We seek and find its relation to the Freed-Witten quantization of worldvolume fluxes on 7-branes in type IIB orientifold compactifications on Calabi-Yau threefolds. By explicitly constructing the appropriate four-cycles on which to calculate the periods of the second Chern class of the fourfolds, we find that there is a half-integral shift in the quantization of G-flux whenever the corresponding dual 7-brane is wrapped on a non-spin submanifold. This correspondence of quantizations holds for all unitary and symplectic gauge groups, except for SU(3), which behaves mysteriously. We also perform our analysis in the case where, in addition to the aforementioned gauge groups, there is also a 'flavor' U(1)-gauge group.Comment: 33 pages, 4 figure

    Gauge Fluxes in F-theory and Type IIB Orientifolds

    Full text link
    We provide a detailed correspondence between G_4 gauge fluxes in F-theory compactifications with SU(n) and SU(n)x(1) gauge symmetry and their Type IIB orientifold limit. Based on the resolution of the relevant F-theory Tate models we classify the factorisable G_4-fluxes and match them with the set of universal D5-tadpole free U(1)-fluxes in Type IIB. Where available, the global version of the universal spectral cover flux corresponds to Type IIB gauge flux associated with a massive diagonal U(1). In U(1)-restricted Tate models extra massless abelian fluxes exist which are associated with specific linear combinations of Type IIB fluxes. Key to a quantitative match between F-theory and Type IIB is a proper treatment of the conifold singularity encountered in the Sen limit of generic F-theory models. We also shed further light on the brane recombination process relating generic and U(1)-restricted Tate models.Comment: 53 pages, 3 figures; v2: Refs added; v3: minor corrections to match version published in JHE

    Security governance and networks: New theoretical perspectives in transatlantic security

    Get PDF
    The end of the Cold War has not only witnessed the rise of new transnational threats such as terrorism, crime, proliferation and civil war; it has also seen the growing role of non-state actors in the provision of security in Europe and North America. Two concepts in particular have been used to describe these transformations: security governance and networks. However, the differences and potential theoretical utility of these two concepts for the study of contemporary security have so far been under-examined. This article seeks to address this gap. It proposes that security governance can help to explain the transformation of Cold War security structures, whereas network analysis is particularly useful for understanding the relations and interactions between public and private actors in the making and implementation of national and international security policies

    Differential regulation of myeloid leukemias by the bone marrow microenvironment

    Get PDF
    Like their normal hematopoietic stem cell counterparts, leukemia stem cells (LSC) in chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML) are presumed to reside in specific niches in the bone marrow microenvironment (BMM)1, and may be the cause of relapse following chemotherapy.2 Targeting the niche is a novel strategy to eliminate persistent and drug-resistant LSC. CD443,4 and IL-65 have been implicated previously in the LSC niche. Transforming growth factor (TGF)-ÎČ1 is released during bone remodeling6 and plays a role in maintenance of CML LSCs7, but a role for TGF-ÎČ1 from the BMM has not been defined. Here, we show that alteration of the BMM by osteoblastic cell-specific activation of the parathyroid hormone (PTH) receptor8,9 attenuates BCR-ABL1-induced CML-like myeloproliferative neoplasia (MPN)10 but enhances MLL-AF9-induced AML11 in mouse transplantation models, possibly through opposing effects of increased TGF-ÎČ1 on the respective LSC. PTH treatment caused a 15-fold decrease in LSCs in wildtype mice with CML-like MPN, and reduced engraftment of immune deficient mice with primary human CML cells. These results demonstrate that LSC niches in chronic and acute myeloid leukemias are distinct, and suggest that modulation of the BMM by PTH may be a feasible strategy to reduce LSC, a prerequisite for the cure of CML

    F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds

    Full text link
    The Mordell-Weil group of an elliptically fibered Calabi-Yau threefold X contains information about the abelian sector of the six-dimensional theory obtained by compactifying F-theory on X. After examining features of the abelian anomaly coefficient matrix and U(1) charge quantization conditions of general F-theory vacua, we study Calabi-Yau threefolds with Mordell-Weil rank-one as a first step towards understanding the features of the Mordell-Weil group of threefolds in more detail. In particular, we generate an interesting class of F-theory models with U(1) gauge symmetry that have matter with both charges 1 and 2. The anomaly equations --- which relate the Neron-Tate height of a section to intersection numbers between the section and fibral rational curves of the manifold --- serve as an important tool in our analysis.Comment: 29 pages + appendices, 5 figures; v2: minor correction

    Tate Form and Weak Coupling Limits in F-theory

    Full text link
    We consider the weak coupling limit of F-theory in the presence of non-Abelian gauge groups implemented using the traditional ansatz coming from Tate's algorithm. We classify the types of singularities that could appear in the weak coupling limit and explain their resolution. In particular, the weak coupling limit of SU(n) gauge groups leads to an orientifold theory which suffers from conifold singulaties that do not admit a crepant resolution compatible with the orientifold involution. We present a simple resolution to this problem by introducing a new weak coupling regime that admits singularities compatible with both a crepant resolution and an orientifold symmetry. We also comment on possible applications of the new limit to model building. We finally discuss other unexpected phenomena as for example the existence of several non-equivalent directions to flow from strong to weak coupling leading to different gauge groups.Comment: 34 page

    A child presenting with acute renal failure secondary to a high dose of indomethacin: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Acute renal failure caused by nonsteroidal anti-inflammatory drugs administered at therapeutic doses is generally mild, non-anuric and transitory. There are no publications on indomethacin toxicity secondary to high doses in children. The aim of this article is to describe acute renal failure secondary to a high dose of indomethacin in a child and to review an error in a supervised drug prescription and administration system.</p> <p>Case presentation</p> <p>Due to a medication error, a 20-day-old infant in the postoperative period of surgery for Fallot's tetralogy received a dose of 10 mg/kg of indomethacin, 50 to 100 times higher than the therapeutic dose. The child presented with acute, oligo-anuric renal failure requiring treatment with continuous venovenous renal replacement therapy, achieving complete recovery of renal function with no sequelae.</p> <p>Conclusion</p> <p>In order to reduce medication errors in critically ill children, it is necessary to develop a supervised drug prescription and administration system, with controls at various levels.</p

    Formalising openCypher Graph Queries in Relational Algebra

    Get PDF
    Graph database systems are increasingly adapted for storing and processing heterogeneous network-like datasets. However, due to the novelty of such systems, no standard data model or query language has yet emerged. Consequently, migrating datasets or applications even between related technologies often requires a large amount of manual work or ad-hoc solutions, thus subjecting the users to the possibility of vendor lock-in. To avoid this threat, vendors are working on supporting existing standard languages (e.g. SQL) or creating standardised languages. In this paper, we present a formal specification for openCypher, a high-level declarative graph query language with an ongoing standardisation effort. We introduce relational graph algebra, which extends relational operators by adapting graph-specific operators and define a mapping from core openCypher constructs to this algebra. We propose an algorithm that allows systematic compilation of openCypher queries.Comment: ADBIS conference (21st European Conference on Advances in Databases and Information Systems) The final publication is available at Springer via https://doi.org/10.1007/978-3-319-66917-5_1
    • 

    corecore